

V32G series

Robust High-pressure Piston Pump

Open circuit

Nominal pressure P_{nom}: 380~420 bar

Peak pressure P_{max}: 420~450 bar

Geometric displacement V_g: 065~300 cm³/rev

2025-09

Hengli InLine Hydraulik GmbH is located in Berlin, Germany. In 2015, Hengli Hydraulics whollyowned the InLine hydraulic factory, dedicated to providing customers with high-performance heavy-duty piston pumps for various applications.

The company has 70 years of experience in designing and manufacturing axial piston pumps, and its products are known for their sturdy structure, heavy load, and high reliability. The control methods are diverse and can meet the needs of various application scenarios. According to the process characteristics, load strength, cycle, and the selection of different control methods and structures based on different application scenarios, they can be widely used in forging machinery, extruders, metallurgical equipment, production lines, ceramic presses, material conveying, mining equipment, port machinery

Marine engineering, mobile cranes, rotary drills, shield tunneling machines, concrete pump trucks and other single machine equipment, production lines, or indoor and outdoor harsh working environments.

Kaemper & Demag

In the 1950s, Kämper began working with the German company DEMAG to manufacture hydraulic products, pumps and valves.

Bellows Valvair

In the 1960s, The American company Bellows Valvair extended its production to focus on successful and innovative axial piston pumps.

VOLVO

In 1973, VOLVO took over the company and with the V30B and V30D set new standards for reliability and service life.

VOAC

In the context of the merger between VOLVO and Atlas Copco, the Berlin company also began supplying its products under the new label VOAC.

HAWE

In 1999, HAWE Hydraulik from Munich takes over the company and immediately begins to expand the product range, including the typical V60N and V30E pumps for mobile applications.

HAWE InLine & Hengli

In 2015, HAWE and Hengli establish worldwide cooperation, under which Hengli takes over management of production in Berlin.

InLine Changzhou

In 2016, Changzhou InLine established a subsidiary in Changzhou, China, focusing on aftersales and application consultant service for customers from Chinese market.

Contents

1	Overview: variable displacement axial piston pump types V32G ······	05
2	Available versions, main data	06
2.1	Basic version	07
2.2	Controller switching symbols ·····	11
2.3	Controller characteristic curves ·····	15
2.4	Comparison of control accuracy of electronic pumps	19
3	Parameters ·····	20
3.1	General ·····	20
3.2	Planning information for parameters·····	22
3.3	Section view ····	23
3.4	Sensor	24
3.5	HDA Amplifier ·····	25
3.6	HLEC2414-PQP-PNController	26
4	Dimensions	28
4.1	Type V32G 065 ····	28
4.2	Type V32G 110 ·····	32
4.3	Type V32G 145/160 · · · · · · · · · · · · · · · · · · ·	37
4.4	Type V32G 205 ·····	43
4.5	Type V32G 280/300 ····	49
4.6	Through drive	52
5	Flush	61
6	Installation information ·····	61
6.1	General information ·····	61
6.2	Installation positions ·····	63
6.3	Tank installation ·····	64
7	Installation, operation and maintenance information ······	65
7.1	Designated use	65
7.2	Assembly information	65

Overview: variable displacement axial piston pump types V32G

InLine Hydraulik GmbH has 70 years for heavy-load piston pump in R&D and manufacturing, and based on rich experience in market application, it has developed a new generation of V32G series products, which can help machinery and equipment cope with various harsh conditions.

The V32G series pump has a high working pressure, the nominal pressure can reach 420 bar, and the peak pressure can reach 450 bar. The overall structure adopts a 45 ° oblique design to achieve compact and lightweight purposes. The V32G series pump has higher power density, which is about 5% higher than the previous generation.

The pumps also have a low outlet standby pressure, which greatly reduces power loss. Moreover, while improving the self-priming performance, the optional built-in booster impeller makes the V32G series pump have a higher speed. In addition, the use of enhanced heavy-duty bearings and spindle design, through the shaft drive, it can adapt to multi-pump series and other large torque and high speed conditions, and has a longer service life.

Adapt to the development of digitalization, The V32G series products can be combined with the pump's own inclined plate swing angle displacement sensor and pressure sensor to achieve integrated control, digital adjustment, and communication of flow, pressure, and power three closed loops, effectively reducing hysteresis and achieving higher control accuracy. In addition, with intelligent control and working condition data analysis and processing, it can achieve monitoring and management of the entire life cycle of hydraulic pumps.

In addition, thanks to the low-noise housing and optimized port plate structure, the V32G improves the noise performance of the entire machine under operating conditions.

Features and benefits:

- · High continuous pressure
- Excellent self-priming performance
- Lower oil outlet standby pressure to reduce power loss(10bar)
- · Enhanced bearing to improve service life
- · Compact design to achieve a breakthrough in higher power density ratio
- Effectively reduce the amount of hysteresis, high control accuracy
- · Low noise

Intended applications:

- Forging machinery, extruders, ceramic presses, mechanical presses
- Metallurgical systems and equipment
- · Material conveying, mining equipment, port machinery
- Shield tunneling machine, concrete pump truck, rotary drilling rig, mobile crane
- Ships, maritime engineering, dredgers, drilling platforms, wind power installation ships
- Rubber and plastic machinery, general machinery

V32G

Variable displacement axial piston pump

Available versions, main data

2.1 Basic version

Circuit symbol:

Order coding example:

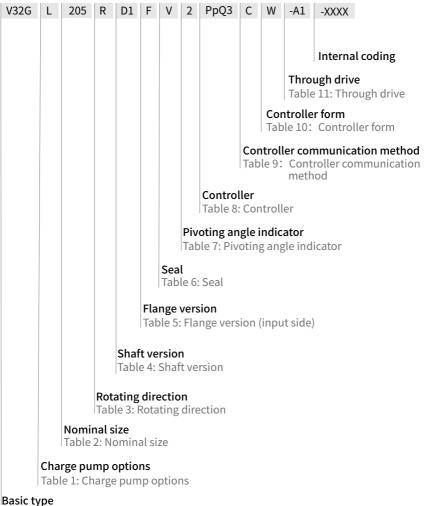


Table 1: Charge pump options

Code	Description	Product model									
		065	110	145	160	205	280	300			
None Without booster pump		•	•	•	•	•	•	0			
L	With booster pump	-	-	•	•	•	•	•			

Note: ● = Available

= Under development

Table 2: Nominal size

Code	Geometric displacement (cm³/rev)	Nominal pressure P _{nom} (bar)	Peak pressure P _{max} (bar)
065	65	420	450
110	110	420	450
145	145	420	450
160	160	420	450
205	203	420	450
280	280	420	450
300	300	380	420

Table 3: Rotating direction *1

Codo	Description	Product model									
Code		065	110	145	160	205	280	300			
L	Anti-clockwise *2	0	0	•	•	•	•	•			
R	Clockwise	•	•	•	•	•	•	•			

Note: ● = Available ○ = Under development

" \star 1" mean is facing the drive shaft.

" $^{\star\,2}$ " mean is the left-hand pump is currently available with a booster option, while a non booster version is under development.

Table 4: Shaft version

Code	Designation/S	'tandard	Max. drive			Prod	uct n	nodel		
Code	Designation/s	otanuaru	torque (N·m)	065	110	145	160	205	280	300
D1		DIN5480 W50×2×24×9g	3140		•	•	•	•		
D2	"D" type Splined	DIN5480 W60×2×28×9g	5780						•	•
D4	shaft	DIN5480 W40×2×18×9g	505	•						
D5	Silait	DIN5480 W45×2×21×9g	2190							
S5 *	ueu .	ANSI B92.1 14T 12/24DP	602	•						
S6 *	"S" type Splined	ANSI B92.1 13T 8/16DP	1640		•	•	•	•		
S7 *	shaft	ANSI B92.1 15T 8/16DP	2670					•	•	•
S9 *	Silait	ANSI B92.1 17T 12/24DP	1104	•						
K0		DIN6885 Ø40 A 12×8×68	700	•						
K1	"K" type	DIN6885 Ø45 A 14×9×80	1050		•					
K2	parallel	DIN6885 Ø50 A 14×9×80	1450			•	•			
К3	keyed shaft	DIN6885 Ø55 A 16×10×100	2200					•		
K4		DIN6885 Ø60 A 18×11×100	2750						•	•

Note: "* "mean is unconventional options.

Table 5: Flange version (input side)

Code	Description Designation/Standard		Product model								
code	Description	Designation/Standard	065 110 145 160 205		205	280	300				
F		ISO 3019-2 125-4	•								
	Flange	SAE J744 152-4		•	•	•					
		SAE J744 165-4					•	•	•		

Note: ● = Available ○ = Under development

Table 6: Seal

Code	Description
V	FKM, permissible temperature range -25°C ~ 115°C (standard)
N	NBR, including the shaft seal is completely made of nitrile rubber, permissible temperature range -40°C ~ 90°C (optional)

Table 7: Pivoting angle indicator

Code	Description
0	None
1	With mechanical angle indicator
2 *	With a tilt angle sensor 0.5 - 4.5V
3 *	With a tilt angle sensor of 0.5 - 4.5V and a pressure sensor of 0 -10V
4	With a tilt angle sensor 4 - 20mA
5	With a tilt angle sensor of 4 - 20mA and a pressure sensor of 4 - 20mA

1 Note: "*" mean is priority selection of model.

Table 8: Control module *1*2

Code	Control type			Prod	duct m	odel		
Code	Control type	065	110	145	160	205	280	300
L1S0	Electric proportional override, Load sensing		•	•	•	•	•	•
DRS0	Pressure Cut-off, Load sensing	•	•	•	•	•	•	•
LRDS	Fixed setting, Pressure Cut-off, Load sensing	•	•	•	•	•	•	•
LRDG	Fixed setting, Pressure Cut-off, Remote pressure	•	•	•	•	•	•	•
E0	Two point control	0	•	•	•	•	•	•
DRE1	Electric proportional displacement, Pressure Cut-off	•						
LRDRE1	Fixed setting, Electric proportional displacement, Pressure Cut-off		•	•	•	•	•	•
DGE1	Electric proportional displacement, Remote pressure	•						
LRDGE1	Fixed setting, Electric proportional displacement, Remote pressure		•	•	•	•	•	•
EC2	Electric proportional displacement closed-loop control	0	•	•	•	•	•	•
EC3	Electric proportional displacement closed-loop control with displacement feedback for valve core	0	•	•	•	•	•	•
PPQ1	Th	0	•	•	•	•	•	•
PPQ2	Three loop control of pressure, flow rate, and power (electronic pump)	0	•	•	•	•	•	•
PPQ3	power (electronic pump)	0	•	•	•	•	•	•

- = Under development
- "*1" mean is (For the functional symbols of the control module, <u>please refer to Chapter 2.2" Functional</u> Symbols of Control Modules ").
- " *2" mean is (For the performance parameter of EC2 EC3 PpQ1, PpQ2, and PpQ3, <u>please refer</u> to Chapter 2.4" Comparison of Electronic Pump Control Accuracy ")

Table 9: Controller communication method*1*2

Code	Modality	L1S0	DRS0	LRDS	LRDG	E0	DRE1	LRDRE1	DGE1	LRDGE1	EC2	EC3	PPQ1	PPQ2	PPQ3
	None	•	•	•	•	•	•	•	•	•	-	-	-	-	-
Α	Analog quantity	•	-	-	-	-	•	•	•	•	•	•	•	•	•
Р	Profinet	-	-	-	-	-	-	-	-	-	-	-	•	•	•
С	Can	-	-	-	-	-	0	0	0	0	0	0	0	0	0

- Note: ●= Available ○ = Under development
 - "*1" when choosing control module mode EC2 EC3 PpQ1 PpQ2 PpQ3, it is generally necessary to use it together with a controller.
 - (See Chapter 3.6, "HLEC2414-PQP-PNController").
 - " *2" mean is codes A, P, and C are optional when selecting the Hengli controller. If not selected, please skip Tables 9 and 10.

Table 10: Controller form*

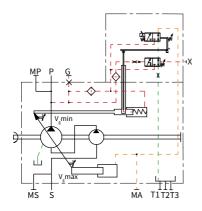
Code	Modality	065	110	145	160	205	280	300
N	Internal controller	0	0	0	0	0	0	0
W	External controller	•	•	•	•	•	•	•

Note: ● = Available

Table 11: Through drive

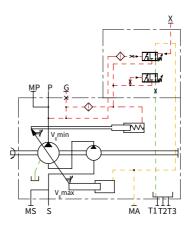
Code	Mounting flange	Hub for splined shaft	065	110	145/160	205	280/300
0	Without through d	rive	•	•	•	•	•
A1	SAE A 82-2	ANSI B92.1 5/8in 9T 16/32DP	0	•	•	•	•
A2	SAE A 82-2	ANSI B92.1 3/4in 11T 16/32DP	•	0	•	•	0
B1	SAE B 101-2	ANSI B92.1 7/8in 13T 16/32DP	•	•	•	•	•
B2	SAE B 101-2	ANSI B92.1 1in 15T 16/32DP	0	•	•	•	•
C1	SAE C 127-2	ANSI B92.1 1 1/4in 14T 12/24DP	0	•	•	•	0
С3	SAE C 127-2	ANSI B92.1 1 1/4in 17T 12/24DP	0	0	•	0	0
C2	SAE C 127-4	ANIS B92.1 1 1/4in 14T 12/24DP	0	•	•	•	•
C4	SAE C 127-4	ANIS B92.1 1 1/4in 17T 12/24DP	•	0	•	0	0
D1	SAE D 152-4	ANSI B92.1 1 3/4in 13T 8/16DP	0	0	•	•	•
D2	SAE D 152-4	DIN 5480 N45×2×21×9g	0	0	0	0	0
D3	SAE D 152-4	DIN 5480 N50×2×24×9g	0	0	•	•	•
E1	SAE E 165-4	ANSI B92.1 2in 15T 8/16DP	0	0	0	•	0
E2	SAE E 165-4	DIN 5480 N50×2×24×9g	0	0	0	•	•
E3	SAE E 165-4	DIN 5480 N60×2×28×9g	0	0	0	0	•

Note: ● = Available

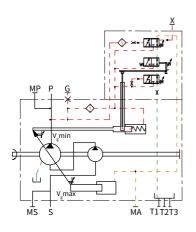

= Under development

⁼ Under development

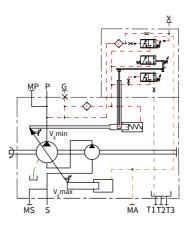
[&]quot;* "mean is when controller communication methods A, P, and C are selected, they must be selected .


L1S0

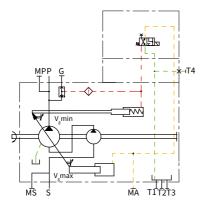
Electric proportional override, Load sensing


DRS0

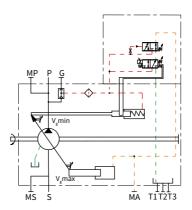
Pressure Cut-off, Load sensing


LRDS

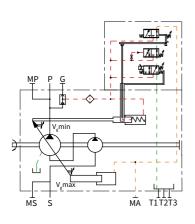
Fixed setting, Pressure Cut-off, Load sensing


LRDG

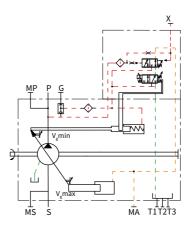
Fixed setting, Pressure Cut-off, Remote pressure


E0

Two point control


DRE1

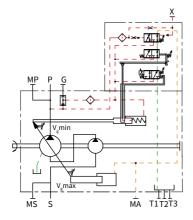
Electric proportional displacement, Pressure Cut-off


LRDRE1

Fixed setting, Electric proportional displacement, Pressure Cut-off

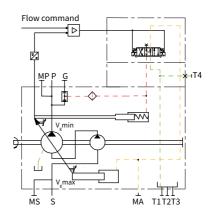
DGE1

Electric proportional displacement, Remote pressure

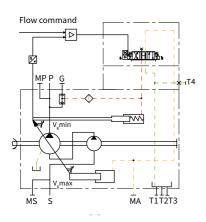


Note: "'1" mean is when the pump is in the initial position or a power-off state,

it is in a full displacement state. "2" mean is when external control leakage control is required, please contact Hengli Hydraulic for specific requirements.

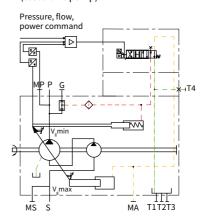

LRDGE1

Fixed setting, Electric proportional displacement, Remote pressure


EC2 *1*2

Electric proportional displacement closed-loop control

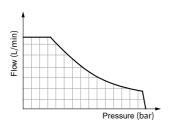
EC3 *2

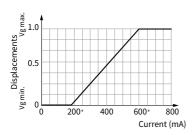

Electric proportional displacement closed-loop control with displacement feedback for valve core

PPO *1*2

Three loop control of pressure, flow rate, and power

(electronic pump)


1 Note: "1" mean is an example diagram of PpQ3 control. When the pump is in the initial position or in a power-off state, the pump is in a full displacement state.


"'2" mean is when external control leakage control is required, please contact Hengli Hydraulic for specific requirements.

The symbols for the PpQ control module are shown in the table below.

Control	Control module	Initial position
module	function symbol	(power-off state)
PPQ1	A B B B B B B B B B B B B B B B B B B B	V _g max
PPQ2	a G T	V _s min
PPQ3	a G T	V _g max

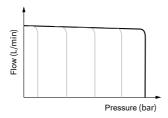
* Due to differences in the mechanical structure of pumps with different displacements, the current may vary slightly.

LR — Power control, fixed setting

The power controller regulates the displacement of the pump depending on the working pressure so that a given drive power is not exceeded at constant drive speed.

The power valve adopts Leverage structure, and the output hyperbolic characteristics can accurately control the power, that means:

 $P_B \times V_g = constant$; $P_B = working pressure$; $V_g = displacement$. The hydraulic output power is influenced by the efficiency of the pump.


E1 — Electric proportional displacement

Through the proportional electromagnet, the displacement of the pump is in direct proportion (Stepless adjustment) to the current. When there is no current signal, the pump displacement is at the minimum value. As the current increases, the pump displacement becomes larger until it reaches the maximum displacement.

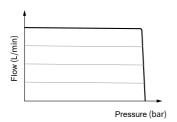
If the pump is to be adjusted from the basic position $V_{g \, min}$ or from a low working pressure, port G must be supplied with an external control pressure of at least 435 psi (30 bar), maximum 725 psi (50 bar).

Technical data, solenoid

Voltage	24 V (±20%)
Rated current	650 mA
Maximum current	770mA
Rated resistance	23.5Ω
PWM Recommended frequency	80~150Hz
Duty cycle	100 %
Type of protection	IP69K
Connector for solenoids	-40°C ~120°C
	*

DR — Pressure controller, fixed setting

The pressure controller limits the maximum pressure at the pump outlet within the control range of the variable pump.

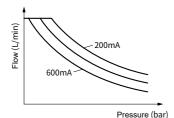

The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the working pressure exceeds the pressure command value at the pressure valve, the pump will regulate to a smaller displacement to reduce the control diff erential.

Basic position in depressurized state: Vg max

Setting range for pressure control: 725 psi to 6100psi (50 bar to 420 bar),

Recommended value: 6100 psi (350 bar).

S0 - Load sensing


Load sensitive control adjusts the pump displacement to the required size of the load by comparing the pressure difference Δ p between the pump outlet pressure and the load pressure, thereby maintaining a constant pump flow rate. If the pressure difference Δ p increases, the pump displacement decreases; If the pressure difference Δ p decreases, the pump displacement increases while maintaining the pressure difference between the pump outlet and the load unchanged.

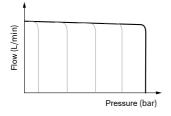
When the pressure setting is reached, cut off the pressure, corresponds to adjust the pump displacement back to the minimum pressure control V_{min} .

The Settable Range of Δp :

Setting range for pressure control: 203 psi to 362 psi (14 bar to 25 bar),

Recommended value: 290 psi (20 bar).

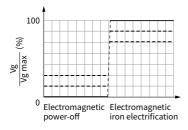
L1 — Electric proportional override

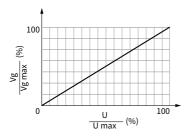

A control current acts against the adjustment spring of the power controller via a proportional solenoid.

Input different currents through electromagnet to control the corresponding output power of the pump, which means: Increasing control current = reduced power.

The power requirements of different operation modes can be realized.

Technical data, solenoid


50 mA
70mA
3.5Ω
0~150Hz
00 %
P69K
40°C ~120°C
7 3 0



DG-Remote pressur

The remote pressure control port sets the control pressure through external overflow valves and other methods. When the working pressure exceeds the set value, the pump will adjust to a small displacement. Set appropriate remote control pressure based on actual usage.

When this function is not required in use, the pressure difference adjustment screw can be locked clockwise to shield the function. Setting range for pressure control: 203 psi to 435 psi (14 bar to 30 bar), Recommended value: 203 psi (14 bar).

E0 — Two point control

The tilt angle of the pump's inclined plate can be adjusted through an electromagnetic directional valve, but it can only be in the maximum position

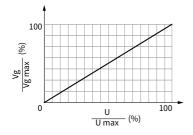
High displacement Vgmax or minimum displacement Vgmin. When the solenoid valve is powered off, the pump displacement is minimized.

When the solenoid valve is powered on, the pump displacement is at its maximum.

Setting range for pressure control: 580 psi to 2899 psi (40 bar to 200 bar),

Recommended value: 1740 psi (120 bar).

EC2 — Electric proportional displacement closed-loop control


By inputting the control signal of the proportional electromagnet, set the displacement size of the pump Then, the actual position of the pump's inclined plate swing angle is determined through the inclined plate swing angle sensor of the pump Feedback: The displacement of the pump is directly proportional to the magnitude of the input signal, and Unlimited adjustment within the range of 0-100%. When there is no current signal, the pump displacement is at maximum value.

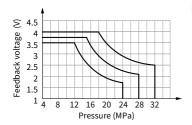
Setting range for pressure control:580 psi to 2899 psi (40 bar to 200 bar),

Recommended value: 1740 psi (120 bar).

Technical data, solenoid

Voltage		
Rated current		
Cold value	2Ω	
Maximum calorific value	3Ω	
	100 %	
Type of protection		
ector	Dechi DT04-2P	
	Maximum calorific value	

EC3 — Electric proportional displacement closed-loop control with displacement feedback for valve core


By inputting the control signal of the proportional electromagnet, set the displacement size of the pump Then, the actual position of the pump's inclined plate swing angle is determined through the inclined plate swing angle sensor of the pump Feedback: The displacement of the pump is directly proportional to the magnitude of the input signal, and Unlimited adjustment within the range of 0-100%. When there is no current signal, the pump displacement is at maximum value.

Setting range for pressure control: 580 psi to 2899 psi (40 bar to 200 bar).

Recommended value: 1740 psi (120 bar).

Technical data, solenoid

· · · · · · · · · · · · · · · · · · ·						
Voltage	24 V					
Rated current	2.5 A					
	Cold value	2.7Ω				
Nominal resistance	Maximum calorific value	4.05Ω				
Duty cycle		100 %				
Type of protection	IP65					
Electromagnetic con	Seven core socket with plug					

PpQ — Three loop control of pressure, flow rate, and power (electronic pump)

By inputting the control signal of the proportional electromagnet, the displacement and pressure of the pump can be set separately

The magnitude of force and power is measured by the pump's inclined plate angle sensor and pump outlet during the process

The pressure sensor provides feedback on the actual position of the pump's inclined plate swing angle, as well as the pump's displacement and pressure

The controlled parameters such as force and power are directly proportional to the size of the input signal, and in Adjustable infinitely within the range of 0-100%; Only one of the three parameters is always real

The state of time regulation, whose priority order is defined by the minimum value generator, has no current signal When the pump is in operation, the displacement is at its maximum value.

Setting range for pressure control: 580 psi to 2899psi (40 bar to 200 bar),

Recommended value: 1740 psi (120 bar).

2.4 Comparison of control accuracy of electronic pumps

EC2

Displacement cc/r	110	145	160	205	280	300
Control pressure bar	120	120	120	120	120	120
Hysteresis %	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Linearity %	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Repetition accuracy %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
0~100% step corresponding time ms	< 100	< 125	< 125	< 150	< 160	< 160

EC3

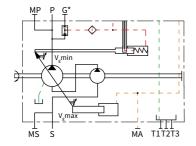
Displacement cc/r	110	145	160	205	280	300
Control pressure bar	120	120	120	120	120	120
Hysteresis %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Linearity %	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Repetition accuracy %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
0~100% step corresponding time ms	< 90	< 100	< 100	< 120	< 130	< 130

PPQ-1

Displacement cc/r	110	145	160	205	280	300
Control pressure bar	120	120	120	120	120	120
Hysteresis %	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Linearity %	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Repetition accuracy %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
0~100% step corresponding time ms	< 100	< 125	< 125	< 150	< 160	< 160

PPQ-2

Displacement cc/r	110	145	160	205	280	300
Control pressure bar	120	120	120	120	120	120
Hysteresis %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Linearity %	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Repetition accuracy %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
0~100% step corresponding time ms	< 90	< 100	< 100	< 120	< 130	< 130


PPQ-3

Displacement cc/r	110	145	160	205	280	300
Control pressure bar	120	120	120	120	120	120
Hysteresis %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Linearity %	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Repetition accuracy %	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
0~100% step corresponding time ms	< 80	< 90	< 90	< 100	< 120	< 120

Parameters

3.1 General

Designation	Variable displacement axial piston pump			
Design	The swash plate principle			
Mounting	Flange mounting or foot bracket			
Surface	Temporarily protected			
Drive/output torque	See Chapter 3.1, "General", under "Max. permissible drive/output torque"			
Installation positions	Any (for installation information see Chapter 6, "Installation information")			
Rotating direction	Clockwise or anti-clockwise			
Ports	· Suction port · Pressure port · Drain port · Pressure gauge connection · Pilot oil port			
Purity class	A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406. (PpQ3 controls cleanliness to be maintained at least at level 18/16/13). When the hydraulic fluid temperature is very high (90 °C to 115 °C maximum) at the drain port, a cleanliness level of at least 19/17/14 according to ISO 4406 is required.			
Cold start	Allowable temperature difference during : between axial piston unit and hydraulic oil Δ T \leq 25K. Starting temperature: T \geq -25 °C (when the temperature is below -25 °C , NBR shaft seal is required).			
	Viscosity: $v_{max} \leqslant 1600 mm^2/s$, temperature: $\theta_{st} \geqslant 25^{\circ}C$ Remarks: $t \leqslant 3$ minutes, no load (20bar $\leqslant p \leqslant 50$ bar), $n \leqslant 1000 r/min_{\circ}$			
Optimal hydraulic oil working require	Hydraulic oil: according to DIN 51524 Part 1 to 3; ISO VG 10 to 68 according to DIN 51519 Continuous operation viscosity range: min. 10 mm2/s; max. 400 mm²/s. Optimal working viscosity range: 16 to 36mm²/s, when lower than 16mm², please contact InLine Hydraulik GmbH. Also suitable for biologically degradable pressure fluids type HEPG (polyalkalene glycol) and HEES (synthetic ester) at operating temperatures up to +70°C.			

Charge pump (impeller)

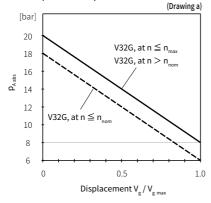
The booster pump is driven by the main shaft to replenish oil for the V32G pump, which can achieve a high operating speed, it is also suitable for cold start during lowtemperatures and high-viscosity hydraulic oil. For the V32G oil pump that includes a booster pump, in most cases there is no need for additional compulsory oil replenishment.

🚺 Note: "* "mean is the internal and external control pilot modes are used here, and the pilot control oil circuit varies when different control modes are selected.

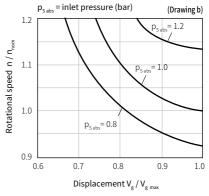
3.1 General

Additional parameters

Product model			065	110	145	160	205	280	300
Min. inlet pressure (absolute) open circuit (Please refer to Figure b below for specific requirements)		bar	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Minimum operating pre	ssure	bar	Please	refer t	o Figur	e a belo	ow		
Maximum allowable sho rated speed (static/dyr	•	bar	2/3	2/3	2/3	2/3	2/3	2/3	2/3
Maximum allowable shell pressure at 1500rpm (static/dynamic)		bar	3/5	3/5	3/5	3/5	3/5	3/5	3/5
Max. permissible inlet pressure (static/dynamic)		bar	20/30	20/30	20/30	20/30	20/30	20/30	20/30
Rated rotation	Without booster pump	rn m	2500	2400	2300	2200	2100	1800	-
speed, at V _{gmax} *	With booster pump	rpm	-	-	2600	2500	2400	2150	2000
Max. rotation speed, at	V _g < V _{gmax}	rpm	Please refer to Figure b below						
Min. rotation speed in c	ontinuous operation	rpm	500	500	500	500	500	500	500
Noise level at 250 bar, 1450 rpm and max. swash plate angle (measured in acoustic measurement chamber according to DIN ISO 4412, measurement distance 1m)		dB(A)	76	78	80	80	83	85	85
Weight (Without	Without booster pump		48.5	74.5	92.7	93.3	111.8	148.7	-
through drive,approximate)	With booster pump	kg	-	-	94	95.6	115	150.5	149


Note:

"*" mean is a llowable rotational speed when the absolute pressure P at the oil suction port is absolute=1 bar.


The minimum operating pressure in the pump line depends on the speed and the swashplate angle; the pressure must not fall below 10 bar under any circumstances.

Note: The housing pressure is only allowed to be 1 bar higher than the suction pressure, But it cannot exceed the maximum allowable pressure of the shell.

▼ Min. pressure of P port

▼ Max. permissible rotational speed

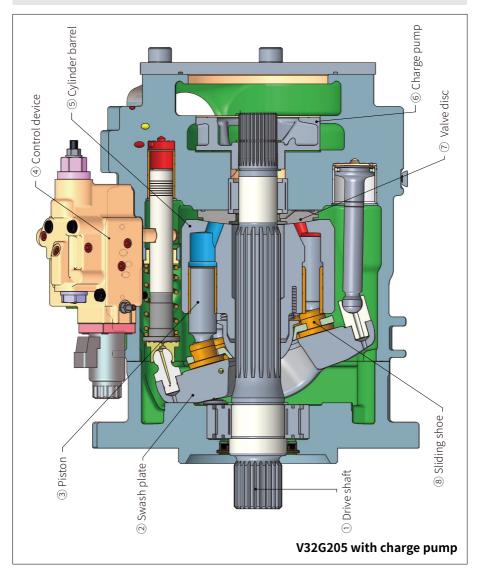
3.1 General

Max. permissible drive/output torque

Product model		065	110	145/160	205	280/300
	Splined shaft D1	-	3140N·m	3140N·m	3140N·m	-
	Splined shaft D2	-	-	-	-	5780N·m
	Splined shaft D4	505N·m				
Max. permissible	Splined shaft S5	602N·m				
drive torque	Splined shaft S6	-	1640N·m	1640N·m	1640N·m	-
	Splined shaft S7	-	-	2670N·m	2670Nm	-
	Splined shaft S9	1104N·m				
	Straight shaft K	700N·m	1050N·m	1450N·m	2200N·m	2750N·m
		•				
Max. permissible output torque		505N·m	960N·m	1100N·m	1300N·m	2200N·m

3.2 Planning information for parameters

Determination of nominal sizes


Delivery flow	$Q = \frac{V_g \cdot n \cdot \eta_v}{1000} (lpm)$		= Geom. output volume (cm³/rev)
	1000	Δр	= Differential pressure (bar)
Drive torque	$M = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} (N \cdot m)$		= Rotation speed (rpm)
	20·π·η _{mh} (**)	ην	= Volumetric efficiency
Drive power	$P = \frac{2\pi \cdot M \cdot n}{60000} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t} \text{ (kw)}$	η_{mh}	= Mechanical-hydraulic efficiency
		η_t	= Overall efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

[Continued from Page 16.]

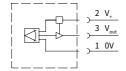
Through the window on the valve plate $\widehat{\mathcal{T}}$, oil suction and pressure can be realized. The control module 4 changes the angle of the swash plate 2 by adjusting the control pressure, thereby changing the pump displacement. 6 It is an impeller booster pump, which can improve the oil absorption capacity of the pump and allow the pump to operate at a higher speed.

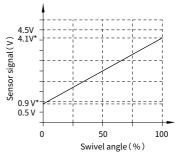
3.3 Section view

The main shaft ① drives the cylinder block assembly to rotate at a high speed, because the swash plate ② and the cylinder block have a certain angle, while the sliding shoe ⑧ rotates on the swash plate, the plunger ③ reciprocates in the hole of the cylinder block ⑤ , so that the plunger is in the cylinder block. The sealing volume in the hole continuously increases and decreases.

[Continue to Page 15.]

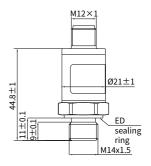
3.4 Sensor


3.4.1 Swash angle pick-up


Technical Parameter

Supply Voltage	10 ~ 30 VDC
Output signal	0.5~4.5V/4~20mA
Tested for automotive field	DIN 40839
Electrical connection	3-PIN AMP
Superseal	1.5 plug
Operation temperature	-40 ∼ 110°C
Protection grade	IP68

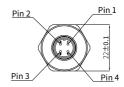
Wiring example



* Due to differences in the mechanical structure of pumps with different displacements, the voltage may vary slightly.

3.4.2 Pressure sensor

Technical Parameter


Pressure range	0~60 Mpa
Supply Voltage	8~36 V
Output signal	0~10 V /4~20 mA
Long term stability	±0.2%FS/year
Overload pressure	2.5 times
Response time	≤ 1ms
Zero temperature drift	±0.1%FS/10°C
Working temperature	-40~125°C
Protection level	IP67
Working medium	Compatible with 17-4 material
	'

^{*}The sensor on the pump is equipped with a 0.5m shielded wire, and there is no plug at the end of the wire.

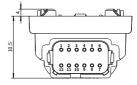
Wiring example

Pin 1	V+
Pin 2	N/C
Pin 3	V-
Pin 4	V _{out}

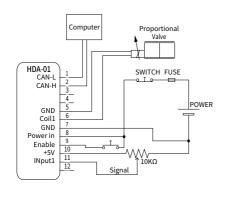
^{*}The core specification is 4×0.25 square millimeters.

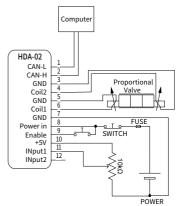
3.5 HDA Amplifier

Can be used for pump and valve control with any single or double electromagnet.


Technical Parameter

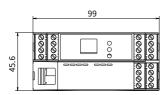
Working voltage	9~32VDC (Power anti-reverse function)
Operating current	3A max
Protection grade	IP67
Input signal	HDA-01 single input, HDA-02 double input
PWM output	HDA-01: 0-3A/DC(One-way continuous),
	-40°C ~+75°C
	HDA-02:0-2.7A/DC(Two-way continuous),
	-40°C ~+75°C
Current resolution	±1mA (When greater than 35mA)
PWM frequency	33Hz~500Hz
Working temperature	-40°C ~+85°C

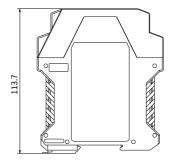



Pin Definition

Pin 1	CAN_L	Pin 7	GND
Pin 2	CAN_H	Pin 8	Power in
Pin 3	Ground (input/output)	Pin 9	Enable
Pin 4	Coil2	Pin 10	+5V
Pin 5	Ground (input/output)	Pin 11	Input 1
Pin 6	Coil1	Pin 12	Input 2

Wiring example

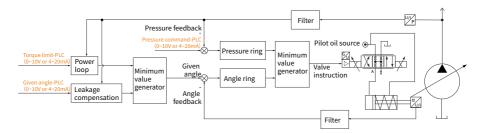

Wiring mode: The foregoing wiring diagram is for reference only.



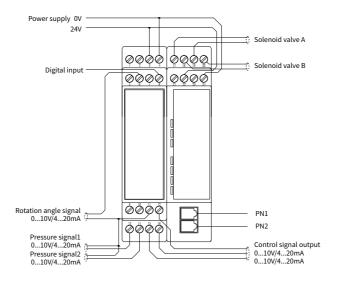
3.6 HLEC2414-PQP-PN Controller

An electronic pump control module that integrates power and control interfaces, suitable for flow, pressure, and power control of electronic pumps.

External dimensions


Technical Parameter

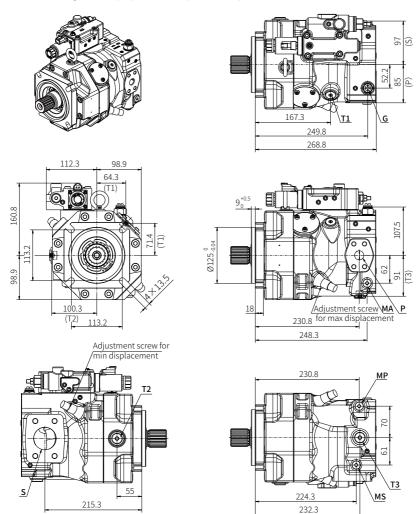
Working voltage	12V ~ 30VDC
Operation temperature	-20°C ~ +60°C
Storage temperature	-20°C ~ +70°C
Relative humidity	40% ~ 90%
Protection grade	IP20
	Power port input anti reverse protection, power output overcurrent
Electrical protection	short circuit protection, port protection.
Liectifeat protection	Signal port input/output overvoltage/overcurrent protection,
	port protection, and fault detection.
Communication model	USB TYPE-B、ProfiNet RJ45
External dimensions	113.7mm*99mm*45.6mm
Digital signal input	Enable input: This application is usually enabled.
	Prepare to output: ON: This module has been enabled with no
Digital signal output	apparent errors.
	OFF: Enable unavailable or detected an error.
	Feedback value rotation angle (XQ), signal range 0~10 V or 4~20mA,
	expandable and adaptive.
Analog input	Feedback value 1, pressure (XP), signal range 0~10 V or 4~20mA,
Allalog Iliput	expandable and adaptive.
	Feedback value 2, pressure (XP), signal range 0~10 V or 4~20mA,
	expandable and adaptive.
Analog output	2 channels, supporting 0 10 V or 4 20 mA
	Electromagnetic valve output * 2/single output MAX 2A or MAX 3.2A,
Electromagnetic valve output	configurable.
Connector	MSTBT2.5/4-ST KMGY, MSTBO2.54-G1L KMGY, MSTBO2.54-G1R KMGY
Product testing types	Functional testing, environmental testing EMC



3.6 HLEC2414-PQP-PN Controller

Control topology block diagram

Wiring example

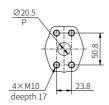

Dimensions

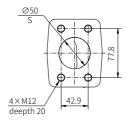
All dimensions in mm, subject to change!

4.1 V32G 065 series

4.1.1 Type V32G 065, clockwise rotation, without booster pump

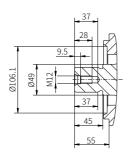
DRE1 — Fixed setting, electric proportional displacement, pressure Cut-off





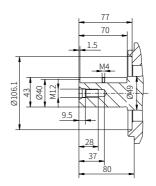
Adjustment screw for min displacement: 0~15 cm³/rev Adjustment screw for max displacement: 55~65 cm3/rev

4.1.1 Type V32G 065, clockwise rotation, without booster pump


Pressure port P

Suction port S

Shaft version

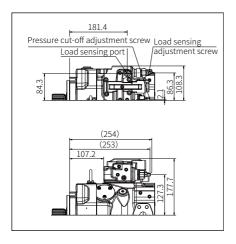

Splined shaft, Coding D4

 $(DIN 5480 W40 \times 2 \times 18 \times 9g)$

Parallel keyed shaft, Coding K0

(DIN 6885 W40 A 12×8×9g)

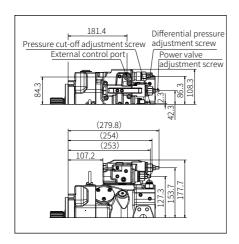
Port details


	Designation	Size	Reference tightening torque (N·m)
P	Output port	SAE J518 3/4 in,DIN 13 M10×1.5, depth 17	60
S	Input port	SAE J518 2in,DIN 13 M12×1.75, depth 20	98
T1, T2, T3	Drain port	DIN 3852,M18×1.5, depth 15	60
MP	Oil outlet pressure measureing	DIN 3852,M14×1.5, depth 12	36
MA	Piston chamber pressure measureing	DIN 3852, M14×1.5, depth 12	36
MS	Suction side pressure measureing	DIN 3852, M14×1.5, depth 12	36
G	External control pressure port	DIN 3852, M14×1.5, depth 12	36

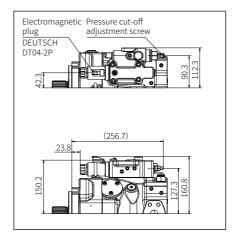
4.1.2 Type V32G 065, clockwise rotation, dimension of control mode

DRS0

Pressure Cut-off, Load sensing


LRDS

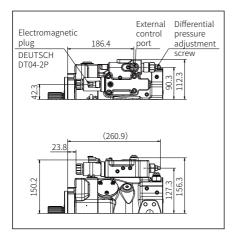
Fixed setting, Pressure Cut-off, Load sensing


LRDG

Fixed setting, Pressure Cut-off, Remote pressure

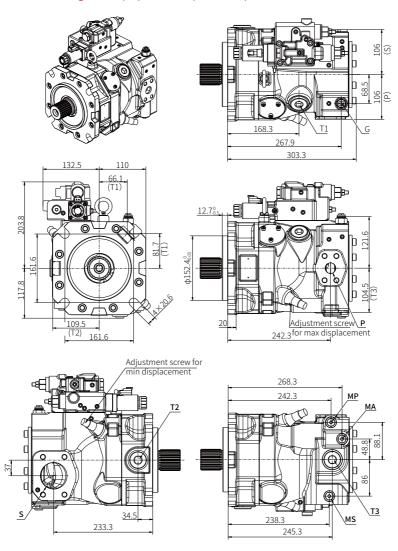
DRE1

Electric proportional displacement, Pressure Cut-off



4.1.2 Type V32G 065, clockwise rotation, dimension of control mode

DGE1

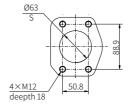

Electric proportional displacement, Remote pressure

4.2 V32G 110 series

4.2.1 Type V32G 110, clockwise rotation, without booster pump

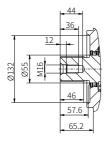
LRDRE1 — Fixed setting, electric proportional displacement, pressure Cut-off

Remarks:


Adjustment screw for min displacement: 0~20 cm³/rev Adjustment screw for max displacement: 90~110 cm³/rev

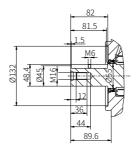
4.2.1 Type V32G 110, clockwise rotation, without booster pump

Pressure port P



Suction port S

Shaft version

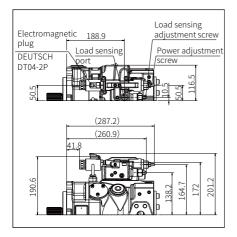

Splined shaft, Coding D1

(DIN 5480 W50 \times 2 \times 24 \times 9g)

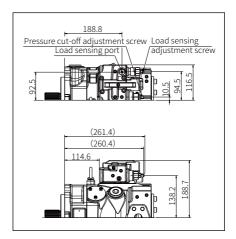
Parallel keyed shaft, Coding K1

(DIN6885 Ø45 A 14×9×80)

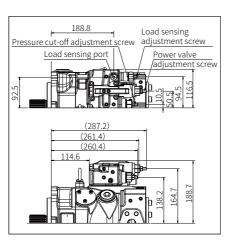
Port details


			Reference
	Designation	Size	tightening
			torque (N·m)
Р	Output port	SAE J518 1 in, DIN 13 M12×1.75, depth18	98
S	Input port	SAE J518 2 1/2in, DIN 13 M12×1.75, depth 18	98
T1, T2, T3	Drain port	DIN 3852, M33×2, depth 18	220
MP	Oil outlet pressure measureing	DIN 3852, M14×1.5, depth 12	45
MA	Piston chamber pressure measureing	DIN 3852, M14×1.5, depth 12	45
MS	Suction side pressure measureing	DIN 3852, M14×1.5, depth 12	45
G	External control pressure port	DIN 3852, M14×1.5, depth 12	45

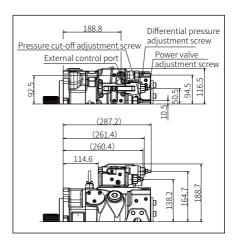
4.2.2 Type V32G 110, clockwise rotation, dimension of control mode


L1S0

Electric proportional override, Load sensing


DRS0

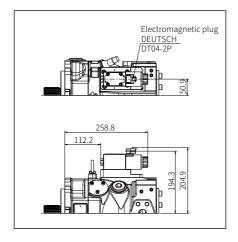
Pressure Cut-off, Load sensing


LRDS

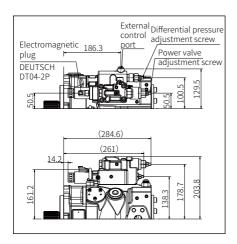
Fixed setting, Pressure Cut-off, Load sensing

LRDG

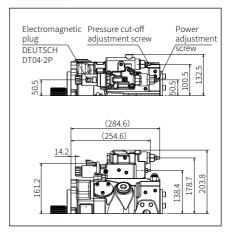
Fixed setting, Pressure Cut-off, Remote pressure



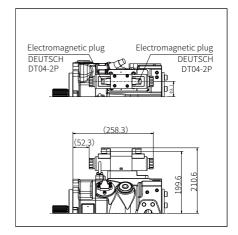
4.2.2 Type V32G 110, clockwise rotation, dimension of control mode


E0

Two point control


LRDGE1

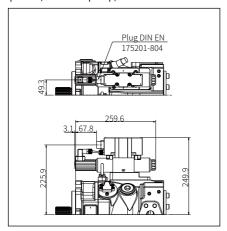
Fixed setting, Electric proportional displacement, Remote pressure


LRDRE1

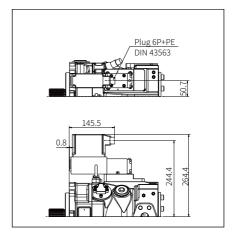
Fixed setting, Electric proportional displacement, Pressure Cut-off

EC2/PpQ1

Electric proportional displacement closed-loop control/Three loop control of pressure, flow rate, and power (electronic pump)



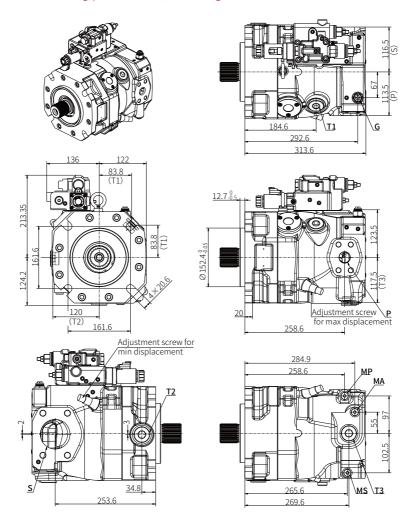
4.2.2 Type V32G 110, clockwise rotation, dimension of control mode


EC3/PpQ2

Electric proportional displacement closed-loop control with displacement feedback for valve core / Three loop control of pressure, flow rate, and power (electronic pump)

PpQ3

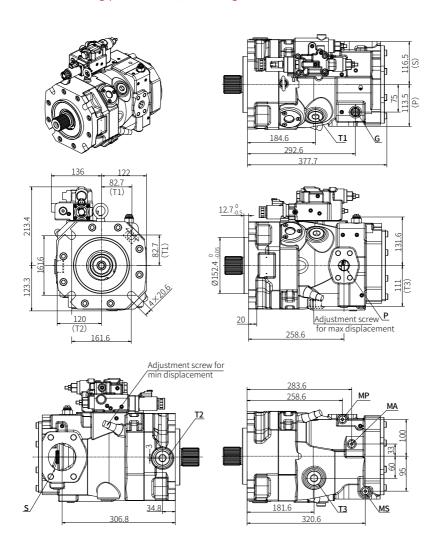
Three loop control of pressure, flow rate, and power (electronic pump)



4.3 V32G 145/160 series

4.3.1 Type V32G 145/160, clockwise rotation, without booster pump

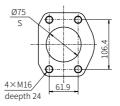
LRDRE1 — Fixed setting, pressure Cut-off, load sensing


V32G145 series Adjustment screw for min displacement: 0~25 cm³/rev Adjustment screw for max displacement: 120~145 cm³/rev

V32G160 series Adjustment screw for min displacement: 0~25 cm³/rev Adjustment screw for max displacement: 135~160 cm³/rev

4.3.2 Type V32GL 145/160, clockwise rotation, with charge pump

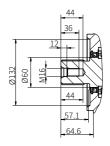
LRDRE1 — Fixed setting, pressure Cut-off, load sensing


V32G145 series Adjustment screw for min displacement: 0~25 cm³/rev
Adjustment screw for max displacement: 120~145 cm³/rev

V32G160 series Adjustment screw for min displacement: 0~25 cm³/rev
Adjustment screw for max displacement: 135~160 cm³/rev

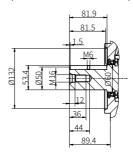
4.3.3 Type V32G(L) 145/160, clockwise rotation

Pressure port P



Suction port S

Shaft version

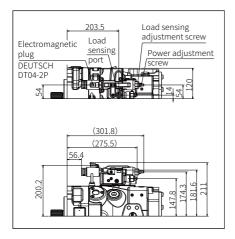

Splined shaft, Coding D1

(DIN 5480 W50×2×24×9g)

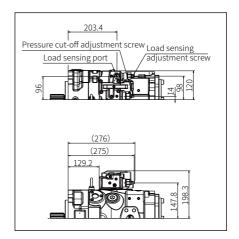
Parallel keyed shaft, Coding K2

(DIN6885 Ø50 A 14×9×80)

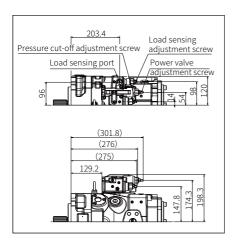
Port details


			Reference
	Designation	Size	tightening
			torque (N·m)
Р	Output port	SAE J518 1 1/4in, DIN 13 M14×2,	160
	Output port	depth 22	100
S	Input port	SAE J518 3in, DIN 13 M16×2,	240
	Input port	depth 24	240
T1, T2, T3	Drain port	DIN 3852, M33×2, depth 19mm	220
MP	Oil outlet pressure measureing	DIN 3852, M14×1.5, depth 12mm	45
MA	Piston chamber pressure measureing	DIN 3852, M14×1.5, depth 12mm	45
MS	Suction side pressure measureing	DIN 3852, M14×1.5, depth 12mm	45
Χ	LS Control port	DIN 3852, M14×1.5, depth 12mm	45
G	External control pressure port	DIN 3852, M14×1.5, depth 12mm	45

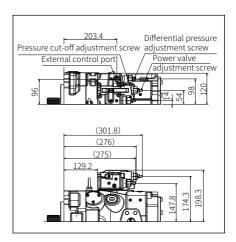
4.3.4 Type V32G(L) 145/160, clockwise rotation, dimension of control mode


L1S0

Electric proportional override, Load sensing


DRS0

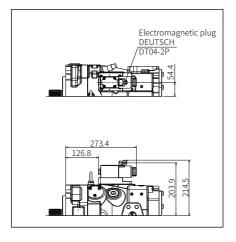
Pressure Cut-off, Load sensing


LRDS

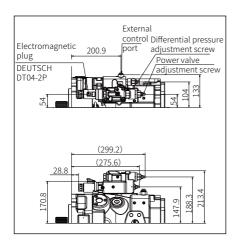
Fixed setting, Pressure Cut-off, Load sensing

LRDG

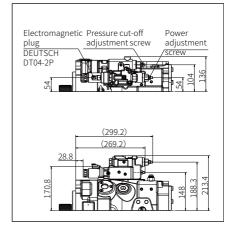
Fixed setting, Pressure Cut-off, Remote pressure



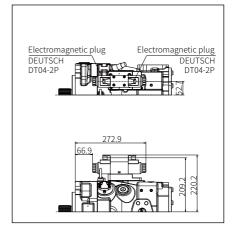
4.3.4 Type V32G(L) 145/160, clockwise rotation, dimension of control mode


E0

Two point control

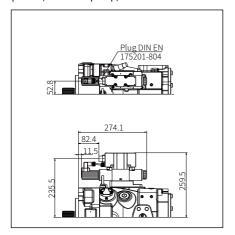

LRDGE1

Fixed setting, Electric proportional displacement, Remote pressure

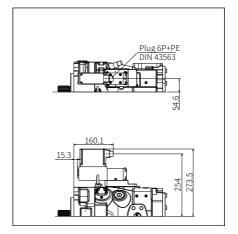

LRDRE1

Fixed setting, Electric proportional displacement, Pressure Cut-off

EC2/PpQ1


Electric proportional displacement closed-loop control/Three loop control of pressure, flow rate, and power (electronic pump)

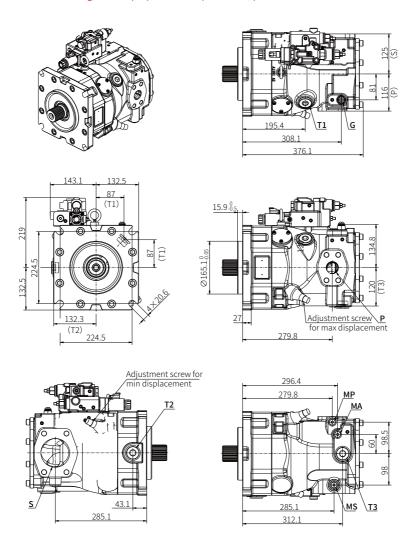
4.3.4 Type V32G(L) 145/160, clockwise rotation, dimension of control mode


EC3/PpQ2

Electric proportional displacement closed-loop control with displacement feedback for valve core / Three loop control of pressure, flow rate, and power (electronic pump)

PpQ3

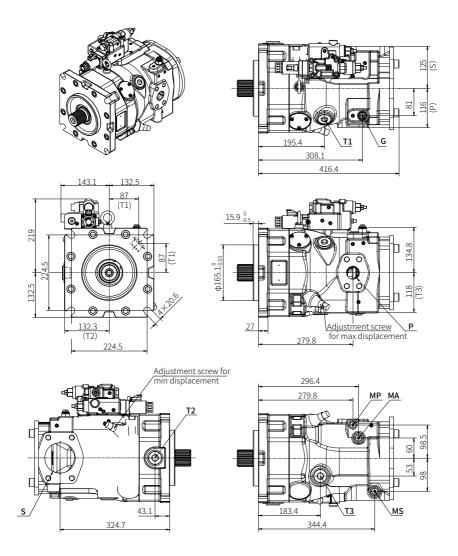
Three loop control of pressure, flow rate, and power (electronic pump)



4.4 V32G 205 series

4.4.1 Type V32G 205, clockwise rotation, without booster pump

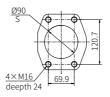
LRDRE1 — Fixed setting, electric proportional displacement, pressure Cut-off



Adjustment screw for min displacement: 0~30 cm³/rev Adjustment screw for max displacement: 180~200 cm³/rev

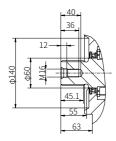
4.4.2 Type V32GL 205, clockwise rotation, with charge pump

${\tt LRDRE1-Fixed\ setting,\ electric\ proportional\ displacement,\ pressure\ Cut-off}$


Remarks:

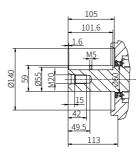
Adjustment screw for min displacement: 0~30 cm³/rev Adjustment screw for max displacement: 180~200 cm³/rev

4.4.3 Type V32G(L) 205, clockwise rotation


Pressure port P

Suction port S

Shaft version

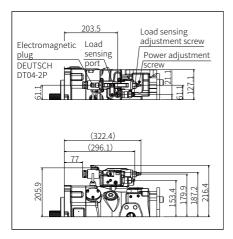

Splined shaft, Coding D1

(DIN 5480 W50×2×24×9g)

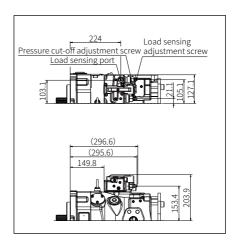
Parallel keyed shaft, Coding K3

(DIN6885 Ø55 A 16×10×100)

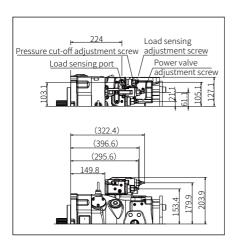
Port details


	Designation	Size	Reference tightening torque (N·m)
P	Output port	SAE J518 1 1/2in, DIN 13 M16×2,	240
		depth 24	
S	Input port	SAE J518 3 1/2in, DIN 13 M16×2,	240
	I started	depth 24	
T1, T2, T3	Drain port	DIN 3852, M33×2, depth 19	220
MP	Oil outlet pressure measureing	DIN 3852, M14×1.5, depth 12	45
MA	Piston chamber pressure measureing	DIN 3852, M14×1.5, depth 12	45
MS	Suction side pressure measureing	DIN 3852, M14×1.5, depth 12	45
Χ	LS External controlpressure port	DIN 3852, M14×1.5, depth 12	45
G	External control pressure port	DIN 3852, M14×1.5, depth 12	45

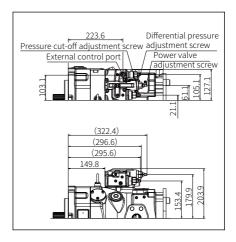
4.4.4 Type V32G(L) 205, clockwise rotation, dimension of control mode


L1S0

Electric proportional override, Load sensing


DRS0

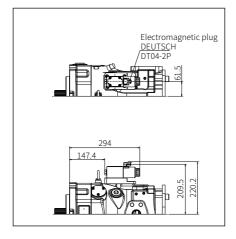
Pressure Cut-off, Load sensing


LRDS

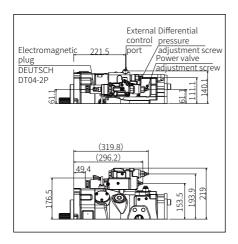
Fixed setting, Pressure Cut-off, Load sensing

LRDG

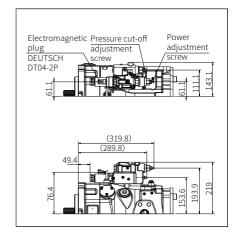
Fixed setting, Pressure Cut-off, Remote pressure



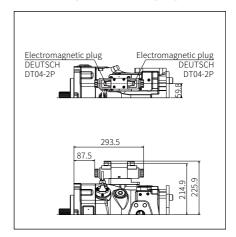
4.4.4 Type V32G(L) 205, clockwise rotation, dimension of control mode


E0

Two point control


LRDGE1

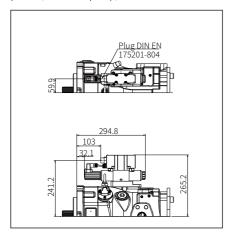
Fixed setting, Electric proportional displacement, Remote pressure


LRDRE1

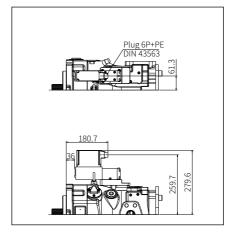
Fixed setting, Electric proportional displacement, Pressure Cut-off

EC2/PpQ1

Electric proportional displacement closed-loop control/Three loop control of pressure, flow rate, and power (electronic pump)



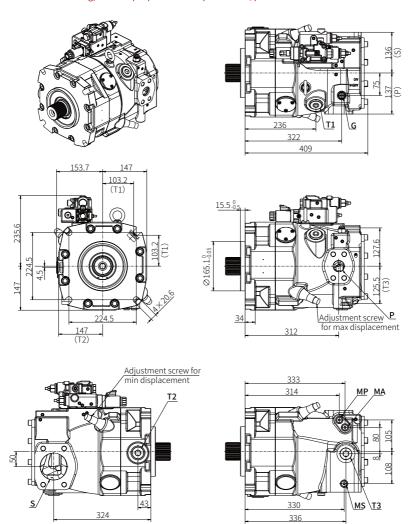
4.4.4 Type V32G(L) 205, clockwise rotation, dimension of control mode


EC3/PpQ2

Electric proportional displacement closed-loop control with displacement feedback for valve core / Three loop control of pressure, flow rate, and power (electronic pump)

PpQ3

Three loop control of pressure, flow rate, and power (electronic pump)

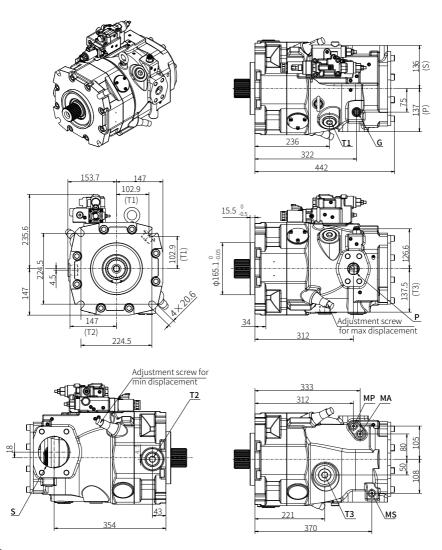


4.5 V32G 300 series

4.5.1 Type V32G 280/300, clockwise rotation, without booster pump

LRDRE1 — Fixed setting, electric proportional displacement, pressure Cut-off

V32G 280 series Adjustment screw for min displacement: 0~40 cm³/rev Adjustment screw for max displacement: 250~280 cm³/rev


V32G 300 series Adjustment screw for min displacement: 0~40 cm³/rev Adjustment screw for max displacement: 250~300 cm³/rev

_ www.inlinehydraulik.com 49

4.5.2 Type V32GL 280/300, clockwise rotation, with charge pump

${\tt LRDRE1-Fixed\ setting,\ electric\ proportional\ displacement,\ pressure\ Cut-off}$

Remarks:

V32G 280 series Adjustment screw for min displacement: 0~40 cm³/rev Adjustment screw for max displacement: 250~280 cm³/rev

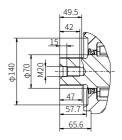
V32G 300 series Adjustment screw for min displacement: 0~40 cm³/rev Adjustment screw for max displacement: 250~300 cm³/rev

4.5.3 Type V32G(L) 280/300, clockwise rotation, with charge pump

Ø100 Ø90 S $\frac{4 \times M16}{\text{deepth 24}}$ 4×M16 deepth 24

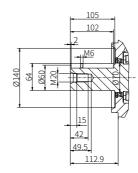
V32GL280/300

Pressure port P


Suction port S

V32G280/300

Shaft version

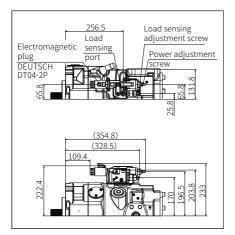

Splined shaft, Coding D2

(DIN 5480 W60 \times 2 \times 28 \times 9g)

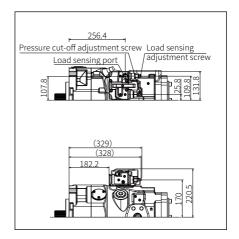
Parallel keyed shaft, Coding K4

(DIN6885 Ø60 A 18×11×100)

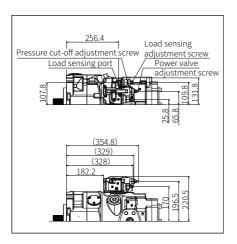
Port details


			Reference
	Designation	Size	tightening
			torque (N·m)
Р	Output part	SAE J518 1 1/2in, DIN 13 M16×2,	240
Ρ	Output port	depth 24	240
S	Input part	SAE J518 4in, DIN 13 M16×2,	240
3	Input port	depth 24	240
T1, T2, T3	Drain port	DIN 3852, M33×2, depth 19	220
MP	Oil outlet pressure measureing	DIN 3852, M14×1.5, depth 12	45
MA	Piston chamber pressure measureing	DIN 3852, M14×1.5, depth 12	45
MS	Suction side pressure measureing	DIN 3852, M14×1.5, depth 12	45
G	External control	DIN 3852, M14×1.5, depth 12	45
	pressure port	Din 3632, M14 × 1.3, depth 12	45

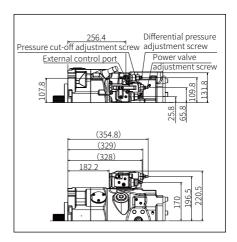
4.5.4 Type V32G(L) 280/300, clockwise rotation, dimension of control mode


L1S0

Electric proportional override, Load sensing


DRS0

Pressure Cut-off, Load sensing


LRDS

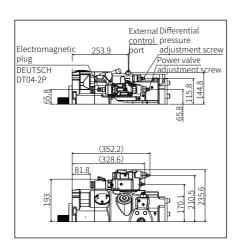
Fixed setting, Pressure Cut-off, Load sensing

LRDG

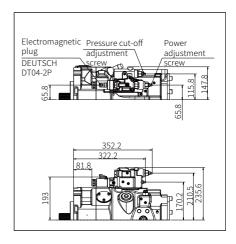
Fixed setting, Pressure Cut-off, Remote pressure



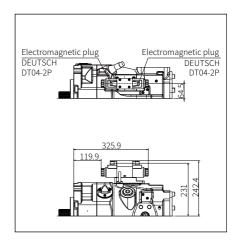
4.5.4 Type V32G(L) 280/300, clockwise rotation, dimension of control mode


E0

Two point control

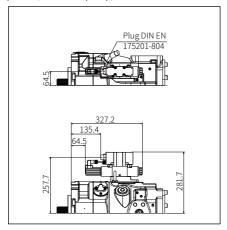

LRDGE1

Fixed setting, Electric proportional displacement, Remote pressure

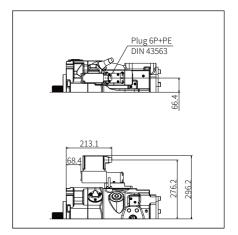

LRDRE1

Fixed setting, Electric proportional displacement, Pressure Cut-off

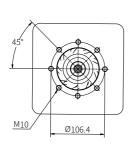
EC2/PpQ1

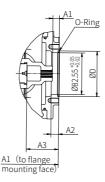

Electric proportional displacement closed-loop control/Three loop control of pressure, flow rate, and power (electronic pump)

4.5.4 Type V32G(L) 280/300, clockwise rotation, dimension of control mode


EC3/PpQ2

Electric proportional displacement closed-loop control with displacement feedback for valve core / Three loop control of pressure, flow rate, and power (electronic pump)

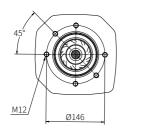


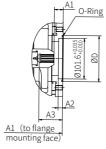

PpQ3

Three loop control of pressure, flow rate, and power (electronic pump)

Flange SAE J744 82-2 (A)

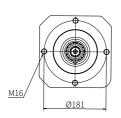
Specification of Splined shaft:

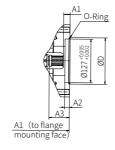

A1: ANSI B92.1 5/8in 9T 16/32DP A2: ANSI B92.1 3/4in 11T 16/32DP


Code	A1 (ANIS B92.1 5/8in 9T 16/32DP)									
		Witho	ut booster	pump		With	With booster pump			
Size	065	110	145/160	205	280	145/160	205	280/300		
A1	-	13	12.4	-	7.6	12.5	12.9	13.4		
A2	-	8	30.1	-	12.6	34.1	15.1	12.6		
A3	-	44	49.9	-	45.6	59.8	63.4	51.4		
A4	-	303.8	355.2	-	400.6	383.9	41.5	433.6		
D	-	90	90	-	90	90	90	90		
М		M10	M10		M10	M10	M10	M10		
	-	depth	depth	-	depth	depth	depth	depth		
(Depth)		18.5	12.5		13	12.5	16	13		

Code	A2 (ANIS B92.1 3/4in 11T 16/32DP)							
		Witho	ut booster	With	n booster pi	ump		
Size	065	110	145/160	205	280	145/160	205	280/300
A1	12.4	-	12.4	18	-	12.5	-	-
A2	12	-	30.1	13.7	-	34.1	-	-
А3	40.8	-	49.9	62.2	-	59.8	-	-
A4	291.8	-	355.2	380.3	-	383.9	-	-
D	90	-	90	90	-	90	-	-
M (Depth)	M10 depth 16.5	-	M10 depth 12.5	M10 depth 16	-	M10 depth 12.5	-	-

Flange SAE J744 101-2(B)


Specification of Splined shaft:

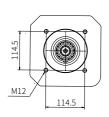

B1: ANSI B92.1 7/8in 13T 16/32DP B2: ANSI B92.1 1in 15T 16/32DP

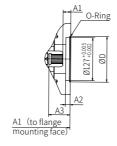
Code		B1 (ANIS B92.1 7/8in 13T 16/32DP)							
		Without booster pump					With booster pump		
Size	065	110	145/160	205	280	145/160	205	280/300	
A1	11.3	14	13.8	-	16.5	13.2	11.6	22.3	
A2	11	11	11	-	11.3	11	15.3	11.3	
A3	50.8	53	50.7	-	49.5	50	71.4	65.3	
A4	301.8	313.8	342.6	-	414.5	378.8	411.5	447.5	
D	110	110	115	-	115	115.3	110	115	
M	M12	M12	M12		M12	M12	M12	M12	
(Depth)	depth	depth	depth	-	depth	depth	depth	depth	
(Бериі)	18	17.5	16		16	18	16	16	

Code	B2 (ANIS B92.1 1in 15T 16/32DP)										
		Witho	ut booster	pump		With	n booster pi	ımp			
Size	065	110	145/160	205	280	145/160	205	280/300			
A1	-	10	13.8	-	16.5	13.2	11.6	22.3			
A2	-	11	11	-	11.3	11	15.3	11.3			
A3	-	45	48.8	-	48.5	48.2	71.4	49			
A4	-	313.8	342.6	-	414.5	378.8	411.5	447.5			
D	-	110	115	-	115	115.3	110	115			
М		M12	M12		M12	M12	M12	M12			
(Depth)	-	depth	depth	-	depth	depth	depth	depth			
(Deptii)		17.5	16		16	16	16	16			

Flange SAE J744 127-2(C)

Specification of Splined shaft:


C1: ANSI B92.1 1 1/4in 14T 12/24DP C3: ANSI B92.1 1 1/4in 17T 12/24DP

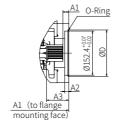

Code	C1 (ANIS B92.1 1 1/4in 14T 12/24DP)							
		Witho	ut booster	pump		With	n booster pi	ımp
Size	065	110	145/160	205	280	145/160	205	280/300
A1	-	15.5	18.9	11.5	-	20.2	13	-
A2	-	13.4	14	14	-	14	11	-
А3	-	61.5	59.3	59.5	-	60.7	65.5	-
A4	-	322.3	352.6	381.6	-	388.8	415.4	-
D	-	135	135	135	-	135	135	-
М		M16	M16	M16		M16	M16	
(Depth)	-	depth	depth	depth	-	depth	depth	-
(Deptii)		24	40	29.5		28	27	

Code	C3 (ANIS B92.1 1 1/4in 17T 12/24DP)							
		Witho	ut booster	With	n booster p	ump		
Size	065	110	145/160	5/160 205	280	145/160	205	280/300
A1	-	-	11.3	-	-	15.5	-	-
A2	-	-	14	-	-	14	-	-
A3	-	-	67.2	-	-	64.7	-	-
A4	-	-	352.3	-	-	388.8	-	-
D	-	-	135	-	-	135	-	-
М			M16			M16		
(Depth)	-	-	depth	-	-	depth	-	-
(Deptil)			40			28		

Flange SAE J744 127-4(C)

Specification of Splined shaft:

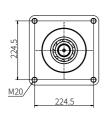
C2: ANSI B92.1 1 1/4in 14T 12/24DP C4: ANSI B92.1 1 1/4in 17T 12/24DP

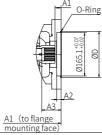

Code	C2 (ANIS B92.1 1 1/4in 14T 12/24DP)							
		Witho	ut booster	pump		With	n booster p	ump
Size	065	110	145/160	205	280	145/160	205	280/300
A1	-	15.5	18.9	11.6	11	20.2	11	16.8
A2	-	13.4	14	14	18	14	13	18
А3	-	61.5	59.3	59.6	58	60.7	65.5	58
A4	-	322.3	352.6	381.6	430	388.8	415.4	463
D	-	135	135	135	140	135	135	140
М		M12	M12	M12	M12	M12	M12	M12
(Depth)	-	depth	depth	depth	depth	depth	depth	depth
(Deptii)		24	40	16	18	28	16	18

Code	C4 (ANIS B92.1 1 1/4in 17T 12/24DP)										
		Witho	ut booster	With	n booster pu	ımp					
Size	065	110	145/160	205	280	145/160	205	280/300			
A1	22.9	-	11.3	-	-	15.5	-	-			
A2	14	-	14	-	-	14	-	-			
A3	64.8	-	67.2	-	-	64.7	-	-			
A4	315.8	-	352.3	-	-	388.8	-	-			
D	135	-	135	-	-	135	-	-			
M	M12		M12			M12					
(Depth)	depth	-	depth	-	-	depth	-	-			
(Beptil)	25		40			28					

Flange SAE J744 152-4(D)

Specification of Splined shaft:

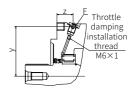

D1: ANSI B92.1 1 3/4in 13T 8/16DP D3: DIN 5480 N50×2×24×9g


Code	D1 (ANIS B92.1 1 3/4in 13T 8/16DP)							
		Witho	out booster	pump		With	n booster p	ump
Size	065	065 110 145/160 205 280				145/160	205	280/300
A1	-	-	-	-	-	20.5	21.5	31.8
A2	-	-	-	-	-	14	14	17
A3	-	-	-	-	-	76.7	77.5	77.3
A4	-	-	-	-	-	400.8	436.4	463
D	-	-	-	-	-	160	160	160
М						M20	M20	M20
(Depth)	-	-	-	-	-	depth 40	depth 24	depth 43

Code	D3 (DIN 5480 N50×2×24×9g)							
		Without booster pump				With booster pump		
Size	065	110	145/160	205	280	145/160	205	280/300
A1	-	-	10.9	-	17.5	11.5	11.5	23.3/23.9
A2	-	-	14	-	17	14	14	17
A3	-	-	68	-	68	76.5	86.5	73.8
A4	-	-	356.1	-	423	400.8	436.4	456
D	-	-	160	-	160	160	160	160
M			M20		M20	M20	M20	M20
(Depth)	-	-	depth	-	depth	depth	depth	depth
(Deptii)			44		36	40	24	36

Flange SAE J744 165-4(E)

Specification of Splined shaft:


E1: ANSI B92.1 2in 15T 8/16DP E2: DIN 5480 N50×2×24×9g E3: DIN 5480 N60×2×28×9g

		mou	ınting face)'							
Code	E1 (ANIS B92.1 2in 15T 8/16DP)									
		Without booster pump					With booster pump			
Size	065	110	145/160	205	280	145/160	205	280/300		
A1	-	-	-	-	-	-	26	-		
A2	-	-	-	-	-	-	19	-		
A3	-	-	-	-	-	-	94	-		
A4	-	-	-	-	-	-	444.4	-		
D	-	-	-	-	-	-	172	-		
M (Depth)	-	-	-	-	-	-	M20 depth 56	-		
Code	e E2 (DIN 5480 N50×2×24×9g)									
		Without booster pump					With booster pump			
Size	065	110	145/160	205	280	145/160	205	280/300		
A1	-	-	-	17.5	17.5	-	17.5	23.4		
A2	-	-	-	19	17	-	19	17		
A3	-	-	-	65.5	68	-	65.5	73.8		
A4	-	-	-	388.6	423	-	416.4	456		
D	-	-	-	171	176	-	172	176		
M (Depth)	-	-	-	M20 depth 36.5	M20 depth 36	-	M20 depth 28	M20 depth 36		
Code		E3 (DIN 5480 N60×2×28×9g)								
		Without booster pump				With booster pump				
Size	065	110	145/160	205	280	145/160	205	280/300		
A1	-	-	-	-	14	-	-	19.8		
A2	-	-	-	-	17	-	-	17		
A3	-	-	-	-	68	-	-	73.8		
A4	-	-	-	-	423	-	-	456		
D	-	-	-	-	176	-	-	176		
M (Depth)	-	-	-	-	M20 depth 36	-	-	M20 depth 36		

5 Flush

- 1. In situations where the oil temperature is too high (Oil temperature exceeds 75 °C), such as under high pressure, heavy load, or harsh working conditions, it is recommended to add a front bearing flushing circuit. Typically, the F port is used to flush the front bearing, which can help protect the shaft seal and improve the service life of the bearing.
- 2. When installing the transmission shaft vertically upwards, external flushing must be added.
- 3. When the F port is used for flushing, the throttling damping hole is used to adjust the flushing flow rate to ensure that the housing pressure is within the allowable range (≤ 2 bar). The flushing oil flows through the front bearing and is discharged through the pump's drain port. When in use, the throttle damping of the F port must be tightened, and if necessary, thread glue should be applied.
- 4. Depending on the pump displacement, the specifications, position dimensions, and recommended flushing flow rate of the F-port plug are as follows:

V32G flushsectional view

Displacement (cc/r)	065	110	145/160	205	280/300
z (mm)	40	33	29	46	48
y (mm)	101	102	113	125	142
Rinse port plug F	M14×1.5	M14×1.5	M14×1.5	M14×1.5	M14×1.5
Flushing flow rate Q _F (L/min)	4	5	6.5	8.5	12.5

Installation information

6.1 General

6.1.1 Precautions for pump installation and use

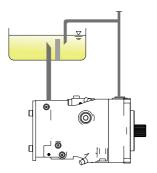
- Mounting and removal of the pump and attached components may be performed by trained persons only.
- Ensure absolute cleanliness during all work. Contamination may have an adverse effect on the function and service life of the pump.
- Remove all plastic plugs prior to initial operation.
- Avoid installing the motor above the tank (see Chapter 6.3, "Installation positions").
- Observe the reference values in Section .
- Prior to initial operation, fill the pump with oil and bleed. Automatic pump filling via the suction line by opening the drain ports is not possible.
- Prevent the pump and suction line from running dry.
- Always ensure a constant supply of oil. Even a brief shortage in the supply of hydraulic fluid to the pump may damage internal parts. This may not be immediately evident after initial operation.

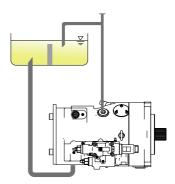
6.1 General

6.1.1 Precautions for pump installation and use

- The hydraulic oil returning to the tank from the system must not be sucked back in immediately (baffles).
- Run the pump for approx. 10 minutes at max. 50 bar after initial operation.
- Thorough bleeding/flushing of the entire system is recommended before the full pressure range is used.
- Observe the max. permissible operating range temperatures (see Chapter 3, "Parameters") at all times.
- Always comply with the specified oil purity classes (see <u>Chapter 3</u>, "<u>Parameters</u>"), provide appropriate hydraulic fluid filtering.
- Use of a filter in the suction line must be approved by InLine Hydraulik.
- Include a main pressure-limiting valve in the pressure line to limit the max. system pressure.

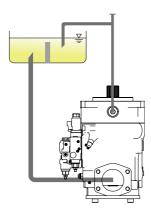
6.1.2 Precautions for Controller Installation and Use


- Before debugging, please check that all seals and plugs for plug-in connections are installed correctly to ensure that no liquid or solid foreign objects enter the product.
- This module is designed to be installed in a shielded EMC enclosure (control cabinet). The distance from overhead power lines, wireless power sources, radar, mobile phones and other equipment should be at least 1m. Avoid installing the controller near strong electromagnetic interference sources. The installation location should not be chosen near power electronic equipment (such as frequency converters), while avoiding prolonged exposure of the equipment to ultraviolet radiation.
- Ensure that the installation location is easy to maintain, allowing unobstructed access to the connecting wires and parts.
- The controller HLEC2414-PQP-PN and power supply device should be installed as close as possible to ensure that the connecting wires are as short as possible.
- For signal cables, please only use low capacitance cables with copper braided shielding layers and connect them extensively to one side of the cable shielding layer using grounding strips. Do not pass signal cables through strong magnetic fields, try to install signal cables continuously as much as possible. If intermediate terminals are required, please use wiring terminals with shielded busbars. Do not lay signal cables near power lines.
- Before carrying out any installation work or unplugging connection wires from the product, please disconnect the power supply of the device. Please ensure that the product is only used within the IP20 protection level to avoid short circuits and malfunctions.
- Maintenance: When the controller HLEC2414-PQP-PN is working, please follow strict cleanliness requirements. To prevent moisture and dirt from entering the casing, only use a dry and dust-free cloth for cleaning, and do not use solvents or corrosive cleaning agents. At least once a year, check whether all plug-in connections and clamping connections of the controller are correctly installed or damaged. Check all cables for breakage or compression.
- If you need volumetric efficiency compensation function and synchronous control function, please contact us.


6.2 Installation positions

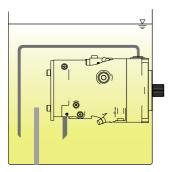
The variable displacement axial piston pump V32G can be installed as follows:

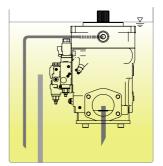
Horizontal installation: (pump below the min. fill level)


For horizontal installation, use the uppermost drain port.

Vertical installation: (pump below the min. fill level)

Mount the pump so that the pump mounting flange is facing upwards. For vertical installation, use the uppermost drain port.

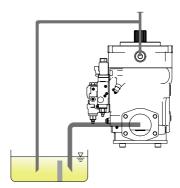




6.3 Tank installation

Tank installation (pump below the min. fill level)


The pump can be operated either with or without a suction tube. Using a short suction intake is recommended.



Additional notes regarding installation above the fill level

Special measures are required if the pump is installed above the fill level. The pump must not run dry via the pressure, intake, drain, bleed or control lines. This applies in particular to long periods of downtime.

Installation, operation and maintenance information

7.1 Designated use

This fluid-power product has been designed, manufactured and tested acc. to standards and regulations generally applicable in the European Union and left the plant in a safe and fault-free condition.

To maintain this condition and ensure safe operation, operators must observe the information and warnings in this documentation.

This fluid-power product must be installed and integrated in a hydraulic system by a qualified specialist who is familiar with and adheres to general engineering principles and relevant applicable regulations and standards.

In addition, application-specific features of the system or installation location must be taken into account if relevant.

This product may only be used as a flow control valveas a pump within oil-hydraulic systems.

The product must be operated within the specified data. This documentation contains the technical parameters for various product versions.

Note:

Non-compliance will void any warranty claims made against InLine Hydraulik GmbH.

7.2 Assembly information

The hydraulic accumulator must be integrated in the system via state of the art connection components (screw fittings, hoses, pipes, etc.). The hydraulic system must be shut down as a precautionary measure prior to dismounting; this applies in particular to systems with hydraulic accumulators.

© by InLine Hydraulik GmbH.

The forwarding and reproduction of this document, as well as the use and communication of its contents, are forbidden unless expressely permitted.

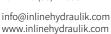
Any breach or infringement will result in liability for damages.

All rights reserved concerning patent or utility model registrations.

Jiangsu Hengli Hydraulic Co., Ltd.

Add: No.99 Longqian Road, Wujin District, Changzhou 213167, China

Tel: +86 400 101 8889 Fax: +86 519 8615 9988


hengli@henglihydraulics.com www.henglihydraulics.com

InLine Hydraulik GmbH

Add: Sperenberger Straße 13 D-12277 Berlin

Tel: +49 (30) 72088-0 Fax: +49 (30) 72088-44

